An FPGA-based High Speed Parallel Signal Processing System for Adaptive Optics Testbed
نویسندگان
چکیده
In this paper a state-of-the-art FPGA (Field Programmable Gate Array) based high speed parallel signal processing system (SPS) for adaptive optics (AO) testbed with 1 kHz wavefront error (WFE) correction frequency is reported. The AO testbed consists of Shack-Hartmann sensor (SHS) and deformable mirror (DM), tip-tilt sensor (TTS), tip-tilt mirror (TTM) and an FPGA-based high performance SPS to correct wavefront aberrations. The SHS and DM are composed of several hundreds of subapertures and actuators, respectively, with Fried geometry, requiring a high speed parallel computing capability SPS. In this study, the target WFE correction speed is 1 kHz; therefore, it requires massive parallel computing capabilities as well as strict hard real time constraints on measurements from sensors, matrix computation latency for correction algorithms, and output of control signals for actuators. In order to meet them, an FPGA based real-time SPS with parallel computing capabilities is proposed. In particular, the SPS is made up of a National Instrument's (NI's) real time computer and five FPGA boards based on state-of-the-art Xilinx Kintex 7 FPGA. Programming is done with NI's LabView environment, providing flexibility when applying different algorithms for WFE correction. It also facilitates faster programming and debugging environment as compared to conventional ones. One of the five FPGA's is assigned to measure TTS and calculate control signals for TTM, while the rest four are used to receive SHS signal, calculate slops for each subaperture and correction signal for DM. With this parallel processing capability of the SPS the overall closed-loop WFE correction speed of 1 kHz has been achieved. System requirements, architecture and implementation issues are described; furthermore, experimental results are also given.
منابع مشابه
Design and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملLow Complexity and High speed in Leading DCD ERLS Algorithm
Adaptive algorithms lead to adjust the system coefficients based on the measured data. This paper presents a dichotomous coordinate descent method to reduce the computational complexity and to improve the tracking ability based on the variable forgetting factor when there are a lot of changes in the system. Vedic mathematics is used to implement the multiplier and the divider in the VFF equatio...
متن کاملAccelerating Real-time processing of the ATST Adaptive Optics System using Coarse-grained Parallel Hardware Architectures
The real-time processing of the four meter Advanced Technology Solar Telescope (ATST) adaptive optics (AO) system with approximately 1750 sub-apertures and 1900 actuators requires massive parallel processing to complete the task. The parallel processing is harnessed with the addition of hardware accelerators such as Field Programmable Gate Array (FPGA) and Graphics Processing Unit (GPU). We inv...
متن کاملLow Complexity Converter for the Moduli Set {2^n+1,2^n-1,2^n} in Two-Part Residue Number System
Residue Number System is a kind of numerical systems that uses the remainder of division in several different moduli. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers will increase the speed of the arithmetic operations in this system. However, the main factor that affects performance of system is hardware complexity of reverse converter. Reverse co...
متن کاملReal Time Implementation of a License Plate Location Recognition System Based on Adaptive Morphology
License plate recognition (LPR) by using morphology has the advantage of resistance to brightness changes; high speed processing, and low complexity. However these approaches are sensitive to the distance of the plate from the camera and imaging angle. Various assumptions reported in other works might be unrealistic and cause major problems in practical experiences. In this paper we considered ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015